A Novel Approach for Retrieving Tree Leaf Area from Ground-Based LiDAR
نویسندگان
چکیده
Leaf area is an important plant canopy structure parameter with important ecological significance. Light detection and ranging technology (LiDAR) with the application of a terrestrial laser scanner (TLS) is an appealing method for accurately estimating leaf area; however, the actual utility of this scanner depends largely on the efficacy of point cloud data (PCD) analysis. In this paper, we present a novel method for quantifying total leaf area within each tree canopy from PCD. Firstly, the shape, normal vector distribution and structure tensor of PCD features were combined with the semi-supervised support vector machine (SVM) method to separate various tree organs, i.e., branches and leaves. In addition, the moving least squares (MLS) method was adopted to remove ghost points caused by the shaking of leaves in the wind during the scanning process. Secondly, each target tree was scanned using two patterns, i.e., one scan and three scans around the canopy, to reduce the occlusion effect. Specific layer subdivision strategies according to the acquisition ranges of the scanners were designed to separate the canopy into several layers. Thirdly, 10% of the PCD was randomly chosen as an analytic dataset (ADS). For the ADS, an innovative triangulation algorithm with an assembly threshold was designed to transform these discrete scanning points into leaf surfaces and estimate the fractions of each foliage surface covered by the laser pulses. Then, a novel ratio of the point number to leaf area in each layer was defined and combined with the total number of scanned points to retrieve the total area of the leaves in the canopy. The quantified total leaf area of each tree was validated using laborious measurements with a LAI-2200 Plant Canopy Analyser and an LI-3000C Portable Area Meter. The results showed that the individual tree leaf area was accurately reproduced using our method from three registered scans, with a relative deviation of less than 10%. Nevertheless, estimations from only one scan resulted in a deviation of >25% in the retrieved individual tree leaf area due to the occlusion effect. Indeed, this study provides a novel connection between leaf area estimates and scanning sensor configuration and supplies an interesting method for estimating leaf area based on PCD.
منابع مشابه
Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry
a r t i c l e i n f o Keywords: Airborne lidar Leaf area index Urban ecosystem analysis Hemispherical photography Allometry Vegetation structure In urban areas, leaf area index (LAI) is a key ecosystem structural attribute with implications for energy and water balance, gas exchange, and anthropogenic energy use. In this study, we estimated LAI spatially using airborne lidar in downtown Santa B...
متن کاملUsing airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates
Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...
متن کاملPresenting a Morphological Based Approach for Filtering The Point Cloud to Extract the Digital Terrain Model
The Digital terrain model is an important geospatial product used as the basis of many practical projects related to geospatial information. Nowadays, a dense point cloud can be generated using the LiDAR data. Actually, the acquired point cloud of the LiDAR, presents a digital surface model that contains ground and non-ground objects. The purpose of this paper is to present a new approach of ex...
متن کاملA model for deriving voxel-level tree leaf area density estimates from ground-based LiDAR
Forest canopy structure has long been known to be a major driver of the processes regulating the exchange of CO2 and water vapour between terrestrial ecosystems and the atmosphere. It is also an important driver of terrestrial vegetation dynamics. Information about fine-scale ecosystem structure is needed to better understand and predict how terrestrial ecosystems respond to and affect environm...
متن کاملEstimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model
The leaf area density (LAD) within a tree canopy is very important for the understanding and modeling of photosynthetic studies of the tree. Terrestrial light detection and ranging (LiDAR) has been applied to obtain the three-dimensional structural properties of vegetation and estimate the LAD. However, there is concern about the efficiency of available approaches. Thus, the objective of this s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016